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Abstract. We present a modified quadratic penalty function method for equality constrained optimization prob-
lems. The pivotal feature of our algorithm is that at every iterate we invoke a special change of variables to improve
the ability of the algorithm to follow the constraint level sets. This change of variables gives rise to a suitable
block diagonal approximation to the Hessian which is then used to construct a quasi-Newton method. We show
that the complete algorithm is globally convergent. Preliminary computational results are reported.
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1. Introduction

One of the great success stories in continuous optimization is the development of effective
quasi-Newton methods for unconstrained minimization (at least for problems of moderate
size). Three important reasons for this success are:

e Line search rules that ensure global convergence are consistent with positive definite
quasi-Newton updates: the approximating matrix can be updated at every iteration (even
at points far from the solution) and positive definiteness can be maintained.

e Ultimately the line search rules allow for unit step sizes which facilitates rapid local
convergence.

e The true Hessian matrix is positive definite in a neighborhood of a strong local minimizer
(thus “justifying” the preservation of positive definiteness of the approximating matrices).

*This research was partially supported by the Applied Mathematical Sciences Research Program (KC-04-02) of
the Office of Energy Research the U.S. Department of Energy under grant DE-FG02-86ER25013.A000, and by
the Computational Mathematics Program of the National Science Foundation under grant DMS-8706133.
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104 COLEMAN, LIU AND YUAN

Unfortunately, adaptation of the unconstrained quasi-Newton technology to the nonlinearly
constrained problem,

minimize { f(x) : c(x) = 0}, (1.1)

where f: 9" — %! and c(x) = [c1(x) c2(x) -+ Cu@)]T: R — R™ (m < n), has not
been an easy task. The problem is not in the asymptotics where there are now many effective
choices, especially with respect to reduced Hessian approximations, e.g., [2,4, 6,7, 11, 12,
18]. The main problem lies in smoothly connecting global techniques, and line searches,
with an effective asymptotic procedure. In particular, second-order optimality conditions
strongly suggest that approximating the reduced Hessian of the Lagrangian function is
the right thing to do. Indeed, the effective asymptotic methods do just this [7, 12, 18].
However, local minimizers of (1.1) are not necessarily local minimizers of the Lagrangian
function; therefore, it is not possible to design consistent line search rules based on the
Lagrangian function. Many global strategies for problem (1.1) are based on penalty or
merit functions; however, direct approximation of the Hessian matrix of a penalty/merit
function is usually a bad idea due to inherent ill-conditioning. Moreover, line search rules
based on a penalty function to ensure global convergence are not usually consistent with
positive definite quasi-Newton approximations to the Hessian, or even the reduced Hessian,
of the Lagrangian function.
In this paper we propose a solution based on the quadratic penalty function:

pu®) = F() + %nc(x)n%.

Our solution rests on the observation that the reduced Hessian of the quadratic penalty
function on a specified curved surface is closely approximated by the reduced Lagrangian
Hessian (on a linear subspace). Therefore, it is possible to tie in curvilinear line search
rules based on the quadratic penalty function with positive definite updates of a reduced
Hessian approximation to the Lagrangian function.

In analogy to the unconstrained quasi-Newton methods, our proposed scheme has three
important properties:

o (Curvilinear) line search rules that ensure global convergence are consistent with positive
definite quasi-Newton updates: the approximating matrix can be updated atevery iteration
(even at points remote from the solution) and positive definiteness can be maintained.
Positive definiteness yields descent directions.

e Ultimately the step size rules allow for unit step sizes: fast asymptotic convergence
follows.

e The true (reduced) Hessian matrix of the Lagrangian function is positive definite in a
neighborhood of a strong local minimizer (thus “justifying” the preservation of positive
definiteness of the approximating matrices).

In addition to allowing a smooth tie-in with an effective asymptotic updating strategy,

the curvilinear search idea has an additional benefit with regard to the quadratic penalty
function. One of the usual drawbacks of this penalty function approach is that progress can
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be very slow, even at points far from the solution. Slow progress can occur when the penalty
parameter u is small, the constraints are near to being satisfied, and yet the solution is still re-
mote. In these circumstances straightline algorithms will exhibit zig-zagging behavior, the
iterates crawl along (or near) the manifold defined by c(x) = 0, slowly headed toward the
minimizer, Of course strategics for adjusting u try to avoid this situation but it is often diffi-
cult to do so. A curvilinear search solves this zigzagging problem and allows for large steps.
Another traditional criticism of the quadratic penalty function concerns the asymptotic ill-
conditioning of the Hessian matrix. However, several studies e.g., [8, 13] have shown how to
circumvent possible negative effects of this ill-conditioning by either using “extended” sys-
tems, or orthogonal transformations to isolate the ill-conditioning. Our proposed approach
is in line with the latter view. In particular, the cause of the asymptotic ill-conditioning is the
decrease of the penalty parameter toward zero; however, the penalty parameter has no role
in the reduced Hessian of the Lagrangian function (i.e., the Hessian of the quadratic penalty
function along a specified curved surface) and this is the matrix that is approximated.

1.1.  Related and supporting work

There is considerable literature on the quadratic penalty function. The fundamental refer-
ence is Fiacco and McCormick’s [10] influential book. Numerically sound approaches for
dealing with ill-conditioning of the Hessian are given in [8, 13]. An algorithm somewhat
similar to ours for constrained optimization using penalty function and constrained step
is proposed in [15]. Methods based on the union of quasi-Newton method and quadratic
penalty function are also suggested in [1]. We can broadly classify this body of work into
two categories: local projected quasi-Newton updating strategies for the nonlinearly con-
strained problem (1.1) and the use of the quadratic penalty function to force convergence
from remote points. For example,

In the nonlinearly constrained minimization problem (1.1) we assume f andevery ¢; (1 <
i < m)aretwice continuously differentiable in the domain of interest. For any givenx € ",
we denote A = A(x) = Ve(x) = [Ver (x) Ve (x) - - - Ve, (0)].

The idea behind a local projected quasi-Newton method for (1.1) is to approximate the
reduction of the Hessian matrix of the Lagrangian on the null space of matrix (A% =
(A(x®)T where x® is the current iterate. Specifically, if the columns of matrix Z* forman
orthonormal basis for the null space of (A®)T, and L(x®, 1®) = f(x®) 4+ Q&) (x®)
is the Lagrangian function, with Lagrange multipliers A%, then the reduced Hessian of L
with respect to x® can be written H = (Z®)TV2 L(x®, 1,®)Z®  In a neighborhood of
a strong local minimizer H (x) is positive definite. Local projected quasi-Newton methods
approximate H (x®) with a positive definite matrix B®. In most projected Hessian methods
B® is updated using Broyden’s class of formulas, e.g., BFGS. For example, Coleman and
Conn [7] propose the following local quasi-Newton method:

solve BOR® = —(z®)'v f® (1.2)
v® AW ((AB)T 40) Lo (30 4 700 (1.3)
N I IO IR OY (1.4)
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Matrix B® is updated using the BFGS formula based on the pair {h%), y®} where y® =
ZOYTIV(LE® + zOp®Y — VL(x®)]. The new Lagrange multipliers A%+ can be
calculated in any of a number of ways, ¢.g., a least-squares calculation.

An important point is that in a neighborhood of a strong minimizer to (1.1) the inner prod-
uct (y®)Th® is positive and therefore the reduced BFGS update is well-defined; positive
definiteness is preserved. Coleman and Conn [7] establish a 2-step superlinear convergence
result for this algorithm; subsequently, this result was strengthened [5, 6] to 1-step super-
linear convergence of the intermediate sequence {x® + Z®r®) A number of variations
of this basic scheme have now been proposed e.g., [18], using different definitions of y®’
and slightly different corrections for x*). However, a common feature is the recurrence of
a reduced matrix B% and the preservation of positive definiteness in a neighborhood of a
strong minimizer due to (y®)Th® > 0. The relevance to our current paper is two-fold.
First, asymptotically we would like the quasi-Newton method based on the quadratic penalty
function to closely resemble the local procedure described above. Second, the crux of our
challenge is to ensure a positivity condition (y*)Tr® > 0 holds globally. We approach
the quasi-Newton globalization problem in the context of the quadratic penalty function.

1.2.  Organization

Our paper is organized as follows. In Section 2 we derive and discuss the proposed algo-
rithm. Global convergence propertics are established in Section 3; preliminary numerical
results, to help establish viability, are provided in Section 4.

2. Algorithm

The most novel aspect of our approach is combining the curvilinear search idea with quasi-
Newton updating. The reason these fit together is that the reduction of V2L onto the null
space of the constraint gradients approximates, to high order, the Hessian of p,, reduced to
the local curved space defined by an approximation to the nonlinear constraints. Let us be
more precise.

Given a point x® € %", define the QR-factorization of A%,

k
A® = QW R = [y®) z®)] [R( >} — y®R® 2.5)
0 ’ '

where Q® e 9" is orthogonal and R® is an m x m upper triangular matrix. Assume
that A% has full column rank; hence, R®’ is nonsingular. For any vector o € 9"~ define a
curved path u(h) = x® 4+ 5% (h) which approximately follows the level set c(x) = c(x%),
where

s = 2Ok + YO (RO) T [e(x®) — e(x® + 2®n)]. 2.6)

Note that under our assumptions (2.6) defines a one-to-one mapping in a neighborhood of
x%®). The following result shows some important properties of the constraint function c(x)
and the penalty function p,, (x) along the path u(h).
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Lemma 2.1. Let p,(x) = f(x) + ﬁ ()3 be the quadratic penalty function and let
u(h) = x© + s®h) where s© (h) is defined in (2.6). Then

cm) = c(x®) +O(nl?) ash — 0, Q2.7
and

VP, () = (Z®)'V £ (x®)

2 N T o2 3 3 k 2.8)
V2p(u(0) = (2®) V2L (x®)z® = H®),

where V2L(x®) = V2 £ (x®) + 7 2OV2¢,(x®) and A" is the ith component of the
(least-squares) Lagrangian multiplier A% = —(R®)~"L(¥ )TV f£(x®),

Proof: For simplicity we will omit the superscript k in the proof. It follows from (2.5)
and (2.6) that Ve(x)"'Z = 0, s(0) = 0, and «(0) = x. Therefore, denoting

r= %[(Zk)TVZCl(x)(Zh), ZWI V2 (x)(Zh), ..., (ZW Ve, (x)(ZW],

we have s(h) = Zh — YR~ Tr + O(|1|*) and
Ve s(h) = RTY"s(h) = —r + O(|R]]*).
Hence
c@u(h)) = c(x + s(h) = c(x) + Ve@) s(h) + 7 + O(Ih]*) = c(x) + O(IR (),
Hence
c(h) = c(x + s(h) = cx) + Ve@) 's) +r + ORI = c(x) + O(IR).
That proves (2.7).
By definition, p, (u(h)) = f(u(h)) + ﬁ S ci(u(h))?. Hence

1 m
Vipu(uh)) = VumV f(uh)) + W > 26 @) Vuh) Ve, (u(h)).
i=1

Itis easy to see that V,,(0) = ZT and ZTV¢;(x) = 0(1 <i < m). Therefore
Vipu@(0) = Z"V f (x).

Now

“ 1
Vi pu @) = V)V fum)Vu@)' + " Vu;(h)d; f wd)) + Vi),

j=l
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where 9; f is the partial derivative with respect to the jthvariable, and (h) = >, ¢;(u(h))
Vu(h)Ve;(u(h)). It follows from direct calculations that

VZu;(0)8; f (u(0) = 2" [ Z(—R‘lYTVf<x>>,»v2c,»<x>}z
=1 i=1

J

and
Vi) =) a)z” [ =) BV + v%m} z,
i=1 k=1
where By = (R™'YTVe;(x)r = 1if k = i and O otherwise. Therefore V¢ (0) = 0 and

Vipu @) = 2"V f@)Z + 2" ) aiVei(x)Z.

i=1

That completes the proof. O

Equation (2.7) says that along any curve u#(h) the value of ||c(u(h))|| changes only very
slightly. Equation (2.8) tells the story: at x% the Hessian of the quadratic penalty function
Pu» reduced to the curved surface defined by u(h), is equal to H®, the Hessian of the
Lagrangian function reduced to the linear manifold defined by the columns of Z®. This is
important because H® does not involve the penalty parameter j; moreover, following the
discussion in Section 1, use of H® is consistent with superlinear convergence.

If we define any potential new iterate to be of the form w(k, v) = u(h) + Y ®v for some
v € 9™, then, locally defining p,, (k, v) = p.(w(h, v)), it follows that

Vi pO, 0)} _ [(Z“))Tvpu(x(“)} _ [(Z“‘))va (x®) } ,

V(h,v)pﬂ(o, O) = [Vvﬁ(o, O) (Y(k))TVp”(x(k)) (Y(k))TVp”(x(k))

and

Z(k))Tsz(xae))Z(k) (Z<k>)TV2£(x<k>)y<k> }

Vi, Du(0,0) = R R
1 P (0. 0) [(y@)Tsz(x(m)Z(k) (Y<k))TV2L(x("))Y(">+ﬁR<")(R<"))T

A (e
where V2L(x®) = V2 f(x®) + Y7 | 26026, (),
It is instructive to consider the Newton system for Vi, ., p,.(k, v):
(h,v)Pu

(Zac))TVzL(x(k))Z(k) (Zac))TVzi(x(k))y(k) h
|:(Y(k))TVZI:(x(k))Z(") (y(k))TVzlj(x<k>)y<k> + ﬁR(k) (ch))T} [vi|
(2%) VP, (x®)
= — [ (Y®)'vp, (M)} : (2.9)
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The following argument suggests an approximation scheme for system (2.9). First, it
follows from Taylor’s theorem that

(z®)'Vp,(x®) + (z®) VL(x®)y®)o ~ (29) ' Vp, (x® + YD)
~ (Z®) 'V (® +ry®y). (2.10)
Thus the top equation in (2.9) can be approximately written as
(z®)' V2L (x®)z®)h = —(z®) V£ (x® + Y D).
Because A® = YO R® and A® = —(R®)~HY®)TV f(x®), we obtain
_ c(x(x®
(Y(k))TVp,L (x®) = R®(R®) l(y(io)T [Vf(x(k)) + A® ( i )}
= _Lpw [1a® — c(x®@)]. @2.11)
"
It is clear that iR(")(R("))T plays a dominant role in the lower of (2.9) as u tends to zero.

Thus, the second equation in system (2.9) is approximated by

1 T T
L R0 (RO, — _(y®\ Ty (4
Lo (50)7y = ()9, (x¥)

1
= S RO[® _ o(x®
RO = (x)]

~ — LRy, 2.12)
"

Therefore, the system (2.9) can be approximated:

&) (RD) v=—c(x®)

; (2.13)
b) BOh=—(Z®) Vf(x® 4+ y®y)

where B® is an approximation to the reduced Hessian matrix H®. The equations in (2.13)
are closely related to the local Newton computation illustrated in Section 1. Indeed the
difference is merely whether the “tangential” step is performed first, and the “half-step” is
then defined by (x® + Z®x®) or the “normal” step is performed.

2.1. The descent curve

Suppose B® is a positive definite matrix of order n — m, (Z®)IV f(x®) £ 0, and
BRI = —(2®)T'V f(x®). Clearly the direction Z®d\® is a descent direction for p,,
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at x® and s® (@) = «Z®d® + YO RO)T[e(x®) — c(x® + aZ®Pd )] is a descent
curve. Our step size procedure determines a positive scalar «® such that

Pu(u(@®d)) = p () < 0a®V,p,uO)’dP (2.14)
Vi (@®d®) d® > oV p, )" dP (2.15)

where 0 <a < w < 1.

Assuming that p, is bounded below along the path A% () = x® + s®(a), it is easy
to establish the existence of a contiguous set of positive values of o satisfying conditions
(2.14, 2.15). We state this result formally: the proof is a straightforward adaptation of Thm
6.3.2. in Dennis and Schnabel [9].

Lemma 2.2. Suppose the functions f,c; : N — RN, i = 1,..., m are continuously dif-
Jerentiable on R". Assume that d,fk) is a direction satisfying Vy pﬂ(u(O))Td,gk) < 0, and
{pﬂ(u(ad;k))):a > 0} is bounded below. Then if 0 < 0 < w < 1 there exists aL, oy with
al > o > 0such that ad® satisfies (2.14,2.15) if a € (o}, al).

The importance of this result is the implication that sufficient decrease along the curved
path u(d,ﬁ'” () is compatible with the projected BFGS update ¢.g., [7]. This follows be-
cause (2.15) and V;, p, (0)7d® < 0 imply (y®)7s® > 0 where y® = Vp,(h®) —
V. (x®).

2.2.  The normal step

Whereas the descent path u(ad,ﬁk)) decreases p, while approximately following c(x) =
c(x®), the normal direction decreases p, while simultancously decreasing [c(x)|. In
particular, a normal direction

a9 = ~(R) ()

is computed when [lc(x®)| > A® pu, where A® = max{||A*| /o, 1} and the Lagrange
multipliers A are computed: A% = —(R®)~Ly ®HTV f£(x®),
First we establish that Y ©d%® is a descent direction.

Lemma 2.3. Suppose the functions f,c; :RX" — N, i = 1, ..., m are continuously dif-
ferentiable on 2" and A® = A(x®) is of full column rank. Assume that at x®,

[e®] > w]2®]. (2.16)

Then, the vector YO d® is a descent direction for Du at x®,

Proof: Inequality (2.16) yields

[c®I”

20N 0
((®) e® < p

2.17)
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Therefore,

Vpu(x®) d® = yOa

® |2
= (LT o _ [<®]°
()" - 1=

< 0. (2.18)

O

Assuming p,, is bounded below in the direction ¥®d®, a sufficient decrease step size
condition follows (see Thm 6.3.2 in Dennis and Schnabel [9]):

Lemma 2.4. Suppose the functions f,c; : 0N — N, i = 1,..., m are continuously dif-
ferentiable on R". Assume {p,(x® + BY®d®): g > 0} is bounded below. Then, if
0 <0 < w < 1, there exist constants B}, B, with B, > B > 0 such that B € (B, B,)

implies
Pu(x® + BY®Pa®) < 0pVp, (x®) Y Pa®. (2.19)
A simple backtracking procedure can be used to find a satisfying step length 8. For
example,
Algorithm Backtrack
e Let0 < 7 < 7/ < 1be given. We perform the line search along the direction Yi(k) vfk) as
follows.
- Setg:=1;
— Until the line search condition
p,u(xq‘) + ﬂy(k)v(k)) - pﬂ(x(")) <oBVp, (xi(k))TYi(k)vfk) (2.20)

is satisfied, choose anew 8 € [t8, T/B].
The penalty parameter ¢ must be driven to zero in the limit. For a given (fixed) value

of p the penalty function p,, is approximately minimized. That is, first order necessary
conditions for problem (1.1) are satisfied inexactly:

O 26 V0] <t

(2.21)
D ()] < A
Upon satisfaction of (2.21), p is reduced, yielding p . satisfying:
p <y <pp, (2.22)

where p < 1. Gould’s analysis [14] underpins conditions (2.22).

Reproduced with permission of the copyright:-owner. Further reproduction prohibited without permissionyyanny.manaraa.com



112 COLEMAN, LIU AND YUAN

Choose values 1 > 0,0 <o <1— L, 0<p<1,ando <o < 1.
Choose a point x; € R” and an # X n positive definite matrix B{O). Seti < 1.
while  ( p; is not sufficiently small )
Set k < 0, x,.(o) <~ x7
while either of the criteria in (2.21) does not hold
if (2.21 b) does not hold
Solve (R®)TdF = —c(x®);
Backtrack: Find a ,Bi(k) > 0 satisfying (2.19)
xi(k+) - xi(k) + ﬂi(k) Yi(k)dg();
else x,.(k+) “« x,.(k);
end;
Solve BPd® = —(z*Tv &)y,
Path search: Find an ozi(k) > 0 satisfying (2.14) and (2.15);
XD ey,
yi(k) <~ Vipy, (xi(kH)) = Vipu, (xi(k+))7
B < BFGS(BY, o, 4}, y{);
k<« k+1,
end;
e x i < maxiu’®, plZHTV 12
i<«i+1;
end;
Set x* < x}* and STOP;

Figure 1. Algorithm 1.

2.3. The algorithm

Next we present the algorithm which mixes (tangential) path searches with normal steps.

Note that the bracketed superscripts refer to inner loops—i.c., updating the iterate x—and

the subscripts i, i + 1 refer to the outer loop (where the penalty parameter w; is adjusted).
A monotone decrease result, for fixed p;, is easy to establish.

Lemma 2.5. Assume a sequence {xi(k)} is generated by Algorithm 1 with index i fixed.
Then,

P (x9) =, (x) < 0. 2.23)

Furthermore, if

le(x®)] > AP (2.24)

(k)
where Afk) = max{w, 1}, then

Le®) P (225)

Vo () Y04 =260 els) -
{

{
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Proof: The direction d,g“) satisfies Bi(k)d,(l'i‘) = =V p,, (1(0)); this, along with (2.14), and
the positive definiteness of Bi(k) implies that

P (55) = P (659) < —o@ Vup, @O (BP) ™' Vipu @0) 0. (2.26)

If (2.24) does not hold, then x** = x® and (2.23) follows from (2.26).
If (2.24) holds, Eq. (2.25) follows from (2.11) and d% = —(R®)~7¢®. Since o < 1,
it follows from (2.20) that

™) = pu () = 08| AG) ) - | 7]

1

o) ]

< 0| 1) 1)) - =

IA

o (UJ 1>||c<xf“) I <o. 2.27)

3. Global convergence

In this section we analyze the global convergence of Algorithm 1. We call x* € %" a
stationary point of problem (1.1) if it satisfies

ZEHIVFED =0 and e(x*) = 0. (3.28)

The main result in this section, given in Theorem 3.1, states that under reasonable as-
sumptions all limit points of the sequence {x,.(k)} are stationary points of problem (1.1).
Moreover, in Theorem 3.2 we show that if there is a finite number of limit points then the
whole sequence {x,.(k)} converges (o a stationary point.

Assumption 3.1. The sequence {x,.(k) } generated by Algorithm 1 is contained in a bounded
convex set D with the following properties:

1. The functions f : R — N, and ¢ : " — R™ and their first and second derivatives are
uniformly bounded in norm over D.

2. The matrix A(x) has full column rank for all x € D, and there is a constant K such that

IA@IA®T AW < Ko (329

forall x € D.

Note that (3.29) implies that || Yi(k) (Ri(k))‘lll < Ky for all i and k. We now prove that the
step lengths ,Bfk) are bounded away from zero.
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Lemma 3.1. Suppose Assumption 3.1 is satisfied. Then there is a constant B > 0, such
that

Bl =p>0
whenever ,Bi(k) is computed in Algorithm 1.

Proof: First, note that in Algorlthm 1 the normal step, and thus the step length ,B(k) i
computed only when ||c(x )|| > A u, Suppose that ,3 < 1. If step length 8 < 11s
the most recent failure of (2.20) in algonthm Backtrack, then

(68 + BY ) = (o) > 0BT ()] V0 630

and 78 < ﬁ,,(k). Since matrices V2¢;(x) and V2 f(x) are bounded and

V2P (%) = Wﬂ)+§2‘”V%(»r MMMMT

i=1 !

Taylor’s theorem yields that for some X, N(k) near x(k)

P + FYOAY) — p,,(60)

2
< B[V pu ()] YO0 + (O aP) [T, ()] (1P )

<BITp ] RAP + X g 631

where K is a constant independent of 11;. Noting that ¥¥d® = -y (R®)Te(x®), it
then follows, using (3.30) and (3.29), that

K ~KK?
~ =V Y0 < FE AP < A o)

(3.32)

On the other hand, since [A*| < A® < "c(x )” whenever & is computed, Eq. (2.25)
implies that

VT (&) 1(k) () 1) ||C(xi(k))||
Vo () 0 < Je(ei®) || 20 - I

(3]
(- U)M. (3.33)

i

IA
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Combining (3.32) and (3.33), we obtain that

(1-0)

»(k)>‘L'~>‘L' .
him=z=th KK} O

Next we show that for any fixed u; > 0 the criteria in Algorithm 1, i.e., (2.21), can
be satisfied after a finite number of iterations. Similar to most convergence analysis for
quasi-Newton methods, we need to make some boundedness assumptions on the matrices
{Bi(k ) }. It should be noted that such assumptions may not always hold, say, for the matrices
generated by the BFGS update.

Lemma 3.2. Let Assumption 3.1 hold, suppose that sequence {xi(k)} is generated by Al-
gorithm 1, and p; is held at a constant value (by Algorithm 1). Furthermore, assume that
there exists a constant M > 0 such that

Cigua(BY) = M2, eigy(BY) = M72, (3.34)

where eig, .. and eig, denote the greatest and the least eigenvalues, respectively. Then
there exists an integer k, such that fork > k

)] = A8 and |2 )] = 635

Proof: _First we prove, by contradiction, that there exists an integer k > 0 such that for
allk > k,

le() ] = AP w. (3.36)
If (3.36) does not hold for all k sufficiently large, there exists a subsequence {k,} such that
le( ) > A i = i

Thus, it follows from (2.23), (2.26), and (2.27) that

P () = P (6%) < pru (65T = s ()
O (12
< —o(l—0)p® (@)
< —o(l— U)ﬂka)M,-,

Thus Lemma 3.1 implies that
Pu (xi(ks+1)) — Pu (xi(kS)) < —o(l—-0)Bu;

which contradicts the fact that p,, (x) is bounded below for any fixed p; > 0.
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Since p; is not further decreased by Algorithm 1, by assumption, and (3.36) holds for all
k > k, it must be that

[z v ()] > " (3.37)

forall k > k.
Inequality (2.14) and the positive definiteness of Bi(k) yield that

P () = P (59) < 0 [2(x) 'V pu (x)] ("))
< —oa® (@) BO4Y <0

Since p,, (x) is bounded below, it follows that
o0
I )] @) < oo,
k=0

Therefore, 11mk_>oo|[(Z(k))TV FEINT(@Pa¥)| = 0. Combining with (3.37), we get
llmk_>oo||oz dh || =
Inequality (2.15) 1mphes that

~[26") V)] @ 4
_ 92 (0@ d?)) = Vipu O] [0d,7]

l—w

1% wled)) ~ i O ||

l—w

(3.38)

It follows from (3.37), (3.38), and the uniform continuity assumption that, as k — oo,

[2@")" VO (@Pd) | Inpu ((@0d)y)) = Vip,, )]
|20 v ) a2~ w1 -w)

{

— 0.

(3.39)

On the other hand, since Z (x,.(k))TY f (x,.(k)) = —B,.(k)d,f:), it follows from (3.34) that for any
k > 0 there exists an integer k > k such that

T £ (] (0P g® N ) 1)
[2G7) VA (@7d”) () B, 1

{

— > >
[0 O] = 18040 |40 = ¥

{

This inequality contradicts (3.39). a
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It clearly follows from Lemma 3.2 that Algorithm 1 generates an infinite sequence of
finite sequences:

{xi(k)} {x(o) xfl), ...,xfkl_l),xfkl) xéo),xél), ...,xékz_l), e,

) .M *k) _ .0
xx L x Xiprs o)

Lemma 3.3. Let Assumption 3.1 hold and assume that there exists a positive constant M
such that (3.34) is valid. Then

tim [1Z(:) ()] + o) ] = 0. (3.40)

Proof: By Lemma 3.2, Algorithm 1 generates an infinite sequence of iterates satisfying
(2.21) for values of = u; converging to zero. But by our assumptions {|Afk) |} is bounded:
the result follows. |

Before we show that all limit points are stationary points we establish a required bound-
edness result.

Lemma 3.4. Suppose that the assumptions in Lemma 3.3 hold. Then

—

ki—

YD [P (") = pu (x9)] < +o0. (3.41)

i=1 k=0

Proof: 1t follows from Assumption 3.1 that there exists a constant N; > 0 such that for
all integers i > Qand 0 <k <k;, |Afk)| < N;. Thus

”C(xi(O))" = Afk)l*i—l < N pi-1.

(ki) ©

Notice that since x;™ = x|, it follows that
2R k k1 S 0 0
D2 12 (x) = ()] = D [P (57”) = b (6i51)]
i=1 k=0 i=1

io: [Pu,( (0)) Duiy (xi(O))] + N,

© )

where N, = p,, (x; ) — inf{p,, (x)} is a constant since p,,(x) is bounded below.
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It follows from Algorithm 1 and (2.22) that
1 1 wi
© © O |12 i—1 4/5
P Pru — == Ne(x)|" = =N} = WL iNT
W60) = s = | = IO = Bz < i,
Therefore, (2.22) implies that
ki—

- %) (e+Dy ] o < Nim
20 [P () = pu (i Z 1_ a5 T N2

i=1 k=0 i—

—

O

We can now prove that every limit point of the sequence {xi(k)} is a stationary point of
problem (1.1).

Theorem 3.1. Suppose that the conditions in Assumptions 3.1 and 3.2 are satisfied. Define
the sequence {x} to be the entire sequence, relabeled; i.e.,

{xe) = {xfo), xfl), ...,xfkl_l), xfkl) =x, xél), )
Then

Jm fle@oll =0, (3.42)
and

Jim 1Zx) "V f )l = 0. (3.43)

Proof: To prove (3.42), we define

2
eI c@)TAx) if le@)|| > Api

0 otherwise.

yx) =

Therefore, y; > 0. It is obvious from Lemma 3.1 and Lemma 2.2 that

087 < P (xP) = P (580 < P (6®) = ppu (x%)

which, with Lemma 3.3, implies that

—

ki—

00 oo ki 1 00 (k) (k+l)
S A = 3 S ) = )] < oo

i=1 k=0

Thus, limg_, % = 0. Notice that since p; — 0 and ||A;| is bounded, it follows from the
definition of {d;} that (3.42) holds.
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To prove (3.43), note that from Lemma 3.3 it follows that forall 0 < k <k; — 1.
P (x0) = p (x¥) = 0 asi — oo,
Similar to the proof of Lemma 3.2, it follows that forall 0 < k < k;
[z vV EO)] (@®h) >0 asi— oo

Assuming (3.43) does not hold, then there exist an € > 0 and a subsequence k; € S such
that

|Z(x) V()| =€ forki €8,
then
let i | = O fork; € S.
And since y, = o, Bi,+1/,, similar to the proof of Lemma 3.2, it follows that for k; € S
[200) V£ ()] (i) [Vipi (i) = Vi (00D
12(o) "V 1 Goe ) ot e |~ cd-o)

[yel Mo |
cl—w) — e(l-w)

O

Finally, if there are only a finite number of limit points to problem (1.1), then the sequence
{xfk)} converges.

Theorem 3.2. Suppose that the conditions in Assumptions 3.1 and 3.2 are satisfied and
that the sequence {x} is the one described in Theorem 3.1. Moreover, suppose that every
stationary point of (1.1) is isolated. Then

lim x;, = x* (3.44)

k— 00

holds, where x* is a stationary point of (1.1).

Proof: Since {x} is bounded, there exists a subsequence xx; of {x;} such that

lim x;, = x7,

J—00
where x* € D is an accumulation point of {x;}. But by Lemma 3.5, (3.28) holds at x*.
That is, x* is a stationary point of (1.1). Therefore, x* is an isolated accumulation point of
{xie )

Now we prove (3.44) by contradiction. Suppose {x;} does not converge. Since x* is an
isolated accumulation point of {x}, there exists a subsequence {xx, } of {x;} and an € > 0
such that ||xkj+1 — X || > € (Lemma 4.10, [16]). But using Theorem 3.1 it follows from
(3.41) that limg_, oo || || = O and limg_, oo ||V || = 0. Hence, limg_ oo [|Xp+1 — x|l = 0. O
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3.1. Remarks

In [4] Byrd and Nocedal propose algorithms based on reduced Hessian methods. Byrd and
Nocedal prove that, for their algorithms,

kgrgo[IIZ(Xk)TVf(xk)ll + llexolll=0 (3.45)

under an assumption stronger than condition (3.34). In particular, Byrd and Nocedal assume
that there exists a ¥ > 0 such that

Cignin (Zf V2L(x, M) Z¢) > ¥, V¥x in the line search segment. (3.46)

Moreover, algorithms in [4] cannot preserve the positive definiteness of By without assump-
tion (3.46). However, assumption (3.46) is rarely satisfied when x; is far away from the
solution. Therefore, in contrast to Algorithm 1, algorithms in [4] may fail when applied to
general nonlinear functions.

4. Numerical results

In this section we present-results of numerical experiments illustrating the performance
of Algorithm 1. The problem set consists of a number of nonlinear equality constrained
problems selected from the CUTE collection [3] and two problems generated by the authors.
All numerical experiments discussed in this section were performed in MATLAB Version
4.1 on a Sun 4/670 workstation.

All test problems are briefly described in Table 1. Most problems in Table 1 (all except
TEST1 and TEST2) are from the CUTE collection [3]. Problem TEST1 is minimization of

Tuble 1. Description of problems.

Problems n m nnz(A) Constraints
BT6 5 2 5 Nonlinear
BT11 5 3 8 Nonlinear
DIPIGRI 7 4 19 Nonlinear
DTOC2 58 36 144 Nonlinear
DTOC4 29 18 65 Nonlinear
DTOC6 21 10 31 Nonlinear
GENHS28 300 298 894 Linear
HS100 7 4 19 Nonlinear
MWRIGHT 5 3 8 Nonlinear
ORTHREGA 517 256 1792 Nonlinear
ORTHREGC 505 250 1750 Nonlinear
ORTHREGD 203 100 500 Nonlinear
TEST1 200 160 dense Quadratic
TEST2 200 160 dense Nonlinear
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a Rosenbrock function [9] with quadratic equality constraints, i.c.,

n—1
minimize Z[(l —x)?+ 100()6[+1 - xiz)z]

i=1

subjectto alx +.5x"Mix =0, i=1,1,...,m,

where a; € N, i = 1,2,...,m, are vectors, and M; € "', i = 1,2,...,m, are
symmetric. The nonlinearity of problem TEST]1 is high if the symmetric matrices M;, i =
1,2, ..., m, are not extremely sparse. In problem TEST2 we add perturbation functions to
both the objective and constraint functions in TEST1. Namely, problem TEST?2 is

n—1
minimize Z[(l —x;)% + 100(xi41 — x,-z)z] + 8o(x)

i=l
subjectto  alx +.5xTMix +8;(x) =0, i=11,...,m,

where 8p(x), 8;(x), i = 1,2, ..., m, are perturbation functions. The perturbation functions
are generated randomly to be linear combinations of polynomials, trigonometric functions,
logarithmic functions and exponential functions. For example, do(x) could be

do(x) = (xf + x4)2 + 1.0+ log (14 x5 + x3)

+ 10sin(27 x5) cos(2mw xg) — et

In problems TEST1 and TEST2, the matrices A = [a, a2, ..., an]and M;, i = 1,2, ...,
m are created randomly.

When solving problems in Table 1 using Algorithm 1, we take puo = 1, p = 0.1 and
o = 0.0001. We set the stopping criterion 0 be ;1 < 1078, For problems TEST1 and
TEST2, the starting point is xo = [.5, .5, ..., .5]7. For the testing problems drawn
from the CUTE collection, we take the default values.

Table 2 illustrates the results of our numerical experiments for problems in Table 1. The
first column gives the name of the problems we solved. The second column shows the
number of iterations (the total number of “inner” iterations, i.e., the sum of &k for every ;)
taken to satisfy the stopping criterion for different problems. Column “function evaluations”
presents the number of function evaluations needed for problems in Table 1. Sub-column
“f, c” (“g, A”) indicates the number of function (gradient) evaluations required. The last
column shows how accurate Algorithm 1 reaches when applied to the testing problems,
where the quantity “error” is defined as

error = I Z@'V f @I + eI

The numerical experiment results indicate that the proposed method is quite robust for
different kinds of constrained problems. The number of function evaluations is generally
low in the test. Extensive numerical experiment is under way and a thorough comparison
with some well-known existing algorithms will be presented in a future report.
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Tuble 2. Results using Algorithm 1.

Function evaluations

Problems Number of iterations fc g, A error

BT6 12 37 21 0(1075)
BT11 9 25 18 0(10™7)
DIPIGRI 16 70 27 0(1076)
DTOC2 12 17 17 0(1075)
DTOC4 4 8 8 0(1075)
DTOC6 11 18 17 0(1075)
GENHS28 6 9 8 0(1075)
HS100 17 75 29 0(1077)
MWRIGHT 14 36 2 0(1075)
ORTHREGA 83 883 91 0(1075)
ORTHREGC 24 61 31 0(1075)
ORTHREGD 21 90 38 0(1075)
TEST1 104 443 116 0(1075)
TEST2 149 526 161 0(1075)

5. Discussion and concluding remarks

We have presented a quasi-Newton quadratic penalty method for solving equality con-
strained minimization problems. When quasi-Newton methods are applied to nonlinear
equality constrained minimization problems, one of the major difficulties is preserving pos-
itive definiteness of the approximating matrices in a reasonable and robust way. In addition,
due to the effect of the penalty term, the quadratic penalty function often forces steps to be
short when far from the solution. In this paper we have proposed a new approach which
not only maintains positive definite Hessian approximations, but also avoids unacceptably
small steps when far from the solution.

The pivotal feature of our approach is alocal transformation, defined at the current iterate,
that leads to a curved correction path. The curved path allows for long steps; moreover,
the quasi-Newton update, defined by the current and next point along the curve, naturally
yields a well-behaved approximation to the reduced Hessian of the Lagrangian function.

We have established global convergence properties; superlinear convergence is conjec-
tured and will be studied in a subsequent paper. Numerical results of preliminary computa-
tional experiments indicate practical potential. Indeed, the theoretical properties along with
our numerical results indicate that our algorithm has considerable potential for efficiently
solving nonlinear equality constrained minimization problems.
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